EP经典第9章-Focal AT and PVC(经典常谈第9章内容概括)
如想交流可关注微信公众号:心电百科,会不定期组织临时学习小组,共同学习进步。
备注1:上次发出《2024研读EP圣经》后,发现有很多伙伴都在学习Sunny Po教授编写的这本经典之作《Warren Jackman's Art of War: A Sniper's Approach to Catheter Ablation》,于是拉了百来人的学习小组做交流用。
备注2:不考虑房颤篇,这本经典著作共十章;学习小组集体选出了10位组长和组员,后续我们会陆续翻译各个章节和组织主题相关的学习交流;其中翻译内容会同步给大家,供学习参考用。
备注3:本章为书籍的第9章,翻译由电生理爱好者孙赫聪完成。翻译过程中有拿不准的细节用“【】”备注了,欢迎指正补充。
《Chapter 9: Ablation of Focal Atrial Tachycardia and Premature Ventricular Contraction》
《第9章: 局灶性房性心动过速(Focal-AT)和室性期前收缩(PVC)的消融》
《9.1 篇章概述》
● As described in Chapter 5, Dr. Jackman’s preferred ablation target for accessory pathway (AP) ablation is where the distal ablation electrode records an AP potential. ● 正如第5章中所述,Dr. Jackman对于旁路(AP)消融的首选消融目标是远端消融电极记录到旁路电位的位置。
● The grand strategy that Dr. Jackman maps a focal atrial tachycardia (AT) or premature ventricular contractions (PVC) is similar and can be summarized in two words: unipolar electrogram (EGM). ● Dr. Jackman对于标测局灶性房性心动过速或者室性早搏(PVC)的总体策略相似,可以概括为:单极电图(unipolar electrogram)。
● Using minimally filtered unipolar EGMs (0.05 or 0.2 Hz to 400-500 Hz) is an integral part of Dr. Jackman’s mapping strategy for all arrhythmias. ● 使用最小程度滤波的单极电图(0.05或0.2 Hz至400-500 Hz)是Dr. Jackman所有心律失常标测策略的不可或缺的组成部分。
● The author has never seen Dr. Jackman mapping an arrhythmia without taking advantage of the timing and morphology of the unipolar EGM. ● 笔者从未见过Dr. Jackman在不利用单极电图的时间和形态的情况下标测心律失常。【timing应该理解为the time when something happens】
---
● Basically, Dr. Jackman uses bipolar EGM to find the target and distal unipolar EGM (UNI-1) to fine-tune the target. ● 基本上,Dr. Jackman使用双极电图来找到目标,使用远端单极电图(UNI-1)来微调目标。
● The EGM at the origin of a focal arrhythmia should fulfill the following criteria (Figure 9.1): ● 局灶性心律失常起源处的电图应满足以下标准(图9.1):
● 1. There is no other site recording earlier near-field or far-field activation. ● 1. 没有其它位置记录到更早的近场或远场激动。【activation纠结翻译为激动或者激活】
● 2. The distal unipolar EGM (UNI-1) and the distal bipolar EGM of the mapping catheter begin simultaneously. ● 2. 远端单极电图(UNI-1)和标测导管的远端双极电图同时起始。
● 3. At this site, the distal unipolar EGM begins with a steep, negative component (a QS or qS pattern). That is, there is no far-field potential earlier than the beginning of the distal unipolar EGM. ● 3. 在这个位置,远端单极电图以陡峭的负向成分开始(QS或qS模式)。也就是说,不存在早于远端单极电图的起始的远场电位。
● Figure 9.1. Site of origin of a focal AT. A. At the site of earliest activation (vertical blue line), distal unipolar EGM (UNI-1) and bipolar EGM (MAPd) of the ablation catheter began simultaneously. Distal unipolar EGM (UNI-1) began with a steep, negative component (red arrows). Ablation here successfully eliminated this focal AT. Note that the polarity of the bipolar electrode pair (MAPd) was connected backwards. It was supposed to subtract UNI-2 from UNI-1 (UNI-1 as the positive terminal and UNI-2 as the negative terminal); however, it was connected backwards (UNI-1 as negative, UNI-2 as positive) so that the bipolar EGM was the result of subtracting UNi-1 from UNI-2. B. Distal unipolar EGM began with a small r wave (blue arrow). The successful ablation site was 1 cm away. C. The distal unipolar EGM exhibits a QS pattern (left panel). However, the timing of both the bipolar and unipolar EGM at the earliest site in the RVOT area was only simultaneous with the onset of the QRS complex. The early far-field component of the distal unipolar EGM might be a low-frequency signal (<1 Hz) and was filtered out (filter setting: 1-400 Hz in this case). Right panel: enlarged view of the left panel.
● 图 9.1。Focal-AT的起源点。A. 在最早激动的位置(垂直蓝线),消融导管的远端单极(UNI-1)和双极电图(MAPd)同时开始。远端单极电图(UNI-1)以陡峭的负向成分(红色箭头)开始。这里的消融成功地消除了这个Focal-AT。请注意,双极电极 (MAPd)的极性反向连接。应当用UNI-1中减去UNI-2(UNI-1作为正极端,UNI-2作为负极端);然而,它是反向连接的(UNI-1 为负,UNI-2 为正),因此双极电图是用UNI-2中减去UNI-1的结果。B.远端单极电图以小 r 波(蓝色箭头)开始。成功消融部位距离1cm。 C. 远端单极电图呈现 QS 模式(左图)。然而,RVOT 区域最早的区域的双极和单极电图的时间仅与 QRS 波群起始平齐。远端单极电图的早的远场成分可能是低频信号 (<1 Hz),并被滤除(在本例中滤波器设置:1-400 Hz)。右侧窗口:左侧窗口的放大视图。
---
● As discussed in Chapter 2, the distal unipolar EGM and distal bipolar EGM of the mapping catheter are filtered differently. ● 正如在第2章中讨论过的,标测导管的远端单极电图和远端双极电图的滤波设置是不同的。
● In the OU-EP laboratory, the high-pass and low-pass filter for the unipolar EGMs are set at 0.1-1 and 400-500 Hz respectively. ● 在OU-EP手术室(University of Oklahoma,该学校常使用OU作为缩写),单极电图的高通和低通滤波器分别设置为0.1-1和400-500Hz。
● The high-pass and low-pass filter for the bipolar EGMs are set at 25-30 and 250-400Hz, respectively. ● 双极电图的高通和低通滤波器分别设置为25-30和250-400Hz。
● The discrepancy of filter setting can lead to significant confusion when the operator interprets the beginning of the unipolar and bipolar EGM. ● 滤波器设置的差异可能导致操作者在解释单极和双极电图的起始时发生严重混淆。【operator纠结翻译为操作者或技术员或者技师,结合后文似乎应该翻译为术者】
● It is not uncommon that the operator identified a site where the unipolar EGM showed a QS pattern but the timing of the bipolar EGM was not early. ● 操作者经常会遇到这样的情况:单极电图显示QS模式,但双极电图的时间并不早。
● This is because the low frequency far-field signal in the unipolar EGM was filtered out if the high-pass filter was set at 1 Hz. The remaining higher frequency components happened to start with a QS morphology. ● 这是因为如果高通滤波器设置为1Hz,单极电图中的低频远场信号会被滤除。 剩下的高频成分恰好以QS形态开始。
● Another possibility is that the gain of the unipolar EGM was too low to recognize a far-field potential with a very small amplitude. ● 另一种可能是单极电图的增益太低,以至于无法识别振幅非常小的远场电位。
● The author prefers to set the unipolar EGM filter to be 0.1-500 Hz when mapping of a focal arrhythmia is expected in order to avoid filtering out the low frequency potential. ● 笔者更喜欢在预期进行局灶性心律失常标测时,将单极电图的滤波器设置为0.1-500Hz,以避免滤除低频电位。
---
● As mentioned in Chapter 1, Dr. Jackman relies heavily on the triggered sweep function of the Bard recording system (now Boston Scientific) to map a focal arrhythmia. ● 正如第1章中提到的,Dr. Jackman在标测局灶性心律失常时非常依赖于巴德多道仪的触发扫描(triggered sweep)功能。
● Although electro-anatomical mapping can be very helpful, Dr. Jackman maps a focal arrhythmia mainly based on the timing and morphology of the EGM to select the ablation target. Electro-anatomical mapping only serves as a tool to remind him of the location of each EGM. ● 尽管三维电解剖标测(electro-anatomical mapping)可能非常有帮助,但Dr. Jackman在标测局灶性心律失常时主要基于电图的时间和形态来选择消融目标。 三维电解剖标测仅作为提醒他每个电图位置的工具。
● When Dr. Jackman uses CARTO to map a focal arrhythmia, the local timing of each point is determined by the first, sharp down-stroke component (largest dV/dt) of the distal unipolar EGM of the mapping catheter, not the earliest timing of the bipolar or unipolar EGM. ● 当Dr. Jackman使用CARTO标测局灶性心律失常时,每个点的局部时间是由标测导管远端单极电图的第一个锐利的下降成分(最大dV/dt)【“远端单极最大下降斜率”】,而不是双极或单极电图的最早时间。
● This practice is to ensure that the timing of each point reflects the true local activation timing. ● 这种做法是为了确保每个点的时间反映了真正的局部激动时间(local activation timing, LAT)。
● After detailed mapping, the true site of earliest activation will be evident. ● 在详细标测后,最早的激动真实位置将变得显而易见。
● Sometimes, there is a large area of early activation. After carefully examining these “early” points, if there is no point fulfilling the 3 criteria listed above, the origin of this focal arrhythmia is unlikely to be on the endocardial surface in this area. Dr. Jackman will consider mapping the epicardial surface or the neighboring chamber. ● 有时,早的激动区域很大。在仔细检查这些“早”的点后,如果没有一个点满足上述3个标准,那么这个局灶性心律失常的起源在这个区域的心内膜表面的可能性很小。 Dr. Jackman会考虑标测心外膜表面或邻近腔室。
● For example, if the earliest EGM in the posterior aspect of the RVOT does not fulfill the 3 criteria, Dr. Jackman will map the coronary cusp before ablating the RVOT target (Figure 9.3). ● 例如,如果RVOT后部的最早电图不满足这3个标准,Dr. Jackman会在消融RVOT目标之前标测主动脉窦(coronary cusp,主动脉瓣的组成成分)(图9.3)。
● Of note, if both unipolar electrodes (UNI-1 and UNI-2) record the same potential, this potential is most likely to be far-field (Figure 9.4A). ● 值得注意的是,如果两个单极电极(UNI-1和UNI-2)记录到相同的电位,这个电位很可能是远场的(图9.4A)。
● 图9.2. 使用单极电图选择消融目标。● A. 在一位年轻女性患者中,Focal-AT起源于左心耳心外膜表面,左心耳心内膜标测显示大面积的“早”的激动。● 所有早的激动时间的点都以远场电位(白色箭头)开始,紧随其后的是远端单极电图的第一个锐利的负向成分(红色箭头)。● 右侧窗口中的电图对应于CARTO图上的白色星号。● B. 心外膜标测确定了最早激动位置。标测导管的远端单极电图和双极电图同时开始。远端单极电图显示QS模式(红色箭头)。在这里消融立刻消除掉了心动过速。
---
● Figure 9.3 PVCs originated from the right coronary cusp (RCC). A. PVCs had a low-amplitude, M-shaped R wave in lead I. Precordial transition of PVCs was earlier than that in sinus rhythm. Note ST elevation in V1 and deep S wave in II, III, aVF and V3-V6. The ECG filter was set to be 1-100 Hz by mistake. ● 上图9.3 PVC起源于右冠状瓣(RCC)。A. PVC在I导联中有一个低振幅的M型R波。室早的胸前导联移行比窦性心律早。注意V1的ST段抬高,还有II、III、aVF、V3-V6中的深S波。ECG滤波器错误地设置为了1-100Hz。
● B. Activation mapping of the RVOT area identified an area that was diffusely early. The distal unipolar EGM of the “earliest” site (white star) began with a far-field potential (white arrow). The local activation timing (red arrow) was 10 ms later than the beginning of the far-field potential. ● B. 右室流出道(RVOT)区域的激动标测确定了一片广泛性早的区域。“最早”部位(白色星号)的远端单极电图(白色箭头)以远场电位开始(白色箭头)。局部激动时间(红色箭头)比远场电位起始晚10毫秒。
● C. Left panel. At the site of successful ablation in the RCC, both the bipolar and distal unipolar EGM were 30 ms earlier than the onset of the QRS complex. The distal unipolar EGM began with a small q wave. ● C. 左侧窗口。在右冠窦(RCC)的成功消融的位置,双极和远端单极电图比QRS波群起始早30毫秒。远端单极电图以一个小的q波开始。
● D. Right Panel. Pace mapping at the successful ablation site only produced 90% match. ● D. 右侧窗口。在成功消融的位置进行起搏标测,仅产生了90%的匹配。
● D. Site of earliest activation recorded from the RVOT (white star) and from the RCC (red star). ● D. RVOT最早激动(白色星号);RCC最早激动(红色星号)
● The sharp component of the distal unipolar EGM, representing the activation of the tissue beneath it, should greatly diminish or be eliminated if ablation is effective. ● 远端单极电图的锐利成分,代表其下方组织的激动,如果消融有效,那么应该大大减弱或者消除。
● If most of the amplitude of the bipolar EGM is contributed by the proximal unipolar EGM (UNI-2), ablation at that site may not affect the amplitude of the bipolar EGM and may mislead the operator to deliver longer RF applications. ● 如果双极电图的大部分振幅由近端单极电图(UNI-2)贡献,那么在该部位的消融可能不会影响双极电图的振幅,并可能误导操作者进行更长时间的放电。
● Therefore, the OU-EP group almost never uses reduction of the amplitude of the bipolar EGM to evaluate ablation efficacy (Figure 9.4). ● 因此,OU-EP团队几乎从不使用双极电图振幅的减小来评估消融效果(图9.4)。
● If the sharp component of the distal unipolar EGM does not change after ablation, it suggests poor electrode-tissue contact or epicardial or intramural origin of the focal arrhythmia. ● 如果消融后远端单极电图的锐利成分没有变化,这表明电极-组织接触不良或者局灶性心律失常起源于心外膜或心肌内。
● Depending on the nature of the focal arrhythmia, the distal unipolar EGM at the site of successful ablation may or may not exhibit a qs/QS pattern. ● 根据局灶性心律失常的性质,成功消融位置的远端单极电图可能或可能不表现出qs/QS模式。
● If the tip electrode is in contact with the source of an RVOT PVC, the distal unipolar EGM probably will begin with a negative component (qs/QS pattern) because the activation wave front begins beneath the tip electrode. ● 如果头端电极与RVOT PVC的起源接触,远端单极电图很可能以负向成分(qs/QS模式)开始,这是因为激动波阵面从头端电极下方开始。【tip electrode纠结翻译为头端电极或尖端电极】
● If the tip electrode is in contact with a band of myocardium above the pulmonary valve that is the source of the PVC, it is unlikely that the distal unipolar EGM will begin with a negative component because the distal electrode simply records the activation wavefront passing through the tissue beneath it. ● 如果头端电极与肺动脉瓣上方的肌袖接触,而该肌袖这是PVC的起源,那么远端单极EGM不太可能以负向成分开始,这是因为远端电极只是记录通过其下方组织的激动波阵面。【此句看请参考原文】
● However, ablation there still can eliminate the PVC. ● 然而,在那里的消融仍然可以消除PVC。
● This is similar to recording an accessory pathway potential, the unipolar EGM of which rarely exhibits a qs/QS pattern.● 这与记录旁路电位类似,后者的单极电图很少表现出qs/QS模式。
● However, ablation anywhere recording an AP potential can eliminate the AP. ● 然而,只要记录到旁路电位,消融任何地方都可以消除旁路。
● Occasionally, the tip electrode is in contact with the beginning of the band of myocardium responsible for the PVC; the pre-potential recorded on the distal unipolar electrode exhibits a qs/QS pattern. ● 偶尔,头端电极与负责PVC的肌袖的起始端接触;远端单极电极记录到的预电位表现出qs/QS模式。
● Figure 9.4. Using distal unipolar EGM to assess ablation effect.上图9.4 使用远端单极电图评估消融效果。
● A. Before PV isolation, the sharp component of the bipolar EGM mainly came from the distal unipolar EGM (UNI-1; red arrow). Proximal unipolar EGM (UNI-2) was rounded and appeared to be far-field. ● A. 在肺静脉(PV)隔离之前,双极电图的锐利成分主要来自远端单极电图(UNI-1;红色箭头)。近端单极电图(UNI-2)呈圆形,看起来像是远场。
● Note that the ventricular potential (green arrows) of the distal and proximal unipolar EGM looked identical, indicating that it was a far-field potential. ● 注意远端和近端单极电图的心室电位(绿色箭头)看起来相同,表明它是远场电位。
● B. Ablation here (30 watts) quickly abolished the sharp, near-field EGM (red arrows) but the UNI-2 EGM remained unchanged (blue arrows). ● B. 在这里(30瓦)消融,迅速消除了锐利的近场电图(红色箭头),但UNI-2电图保持不变(蓝色箭头)。
● C. At a different site, the sharp component of the UNI-2 EGM (red arrow) constituted most of the bipolar EGM. In contrast, the UNI-1 EGM was rounded and appeared to be far field. After RF application, neither the unipolar EGMs nor bipolar EGM changed. ● C. 在另一个部位,UNI-2电图的锐利成分(红色箭头)构成了双极电图的大部分。相比之下,UNI-1电图呈圆形,看起来像是远场。放电后,单极电图和双极电图都没有变化。
● D. After the ablation catheter was repositioned, the sharp component of the bipolar EGM now came from the UNI-1 EGM. Ablation there quickly abolished both the UNI-1 EGM and bipolar EGM. ● D. 在消融导管重新定位后,双极电图的锐利成分现在来自UNI-1电图。在那里消融迅速消除了UNI-1电图和双极电图。
● These examples demonstrate the importance of analyzing both the UNI-1 and UNI-2 EGM for mapping/ablation. ● 这些例子展示了分析UNI-1和UNI-2电图对于标测/消融的重要性。
● After exhaustive search, if the EGM at the site(s) of earliest endocardial activation is always preceded by a far-field potential, the origin of the PVC may be intramural, epicardial or in the neighboring chamber (Figure 9.5). ● 在彻底搜寻后,如果最早心内膜激动位置(可能多处)的电图总是出现在远场电位电位之前,那么PVC的起源可能是心肌内、心外膜或邻近腔室(图9.5)。【考虑文意,intramural意译为心肌内部的】
● To deliver higher power and/or longer RF applications will depend on the location of the site of “earliest” activation. ● 提供更高功率和/或更长时间的放电将取决于“最早”激动位置的地方。
● For posterior RVOT locations, it is advisable to map the coronary cusps and LVOT first. ● 对于RVOT后部的地方,建议首先标测主动脉窦和左室流出道(LVOT)。
● For ventricular septum site, it may require ablation from both the RV and LV side. ● 对于室间隔部位,可能需要从右室和左室两侧都进行消融。
● The author had heard plenty stories about catastrophic tamponade because operators did not use the unipolar EGM to localize the source of PVCs. ● 笔者听说过很多关于操作者没有使用单极电图定位PVC起源而导致灾难性心包填塞的故事。
● Higher power of RF applications were delivered to the RVOT after ablation transiently suppressed the PVC. ● 在消融暂时抑制PVC后,向RVOT发放更高功率的射频能量。
● Most of such complications could have been prevented if the operator had analyzed the unipolar EGM carefully to realize that the target was not on the endocardial surface of the RVOT. ● 如果操作者仔细分析单极电图,意识到目标不在RVOT的心内膜表面,那么大多数这类并发症本可以避免。
● If the ablation target is in a scar, unipolar recordings may not be helpful in selecting ablation target. ● 如果消融目标位于瘢痕中,那么单极记录在选择消融目标方面可能没有帮助。
● Local abnormal ventricular activities (LAVA) may be embedded deep in dense scars. The distal unipolar EGM may not show any sharp potential (local activation) at all. The bipolar EGM may better represent the local ventricular activation for selecting ablation targets and monitoring ablation efficacy (Figure 9.6). ● 局部异常心室活动(LAVA, Local abnormal ventricular activities)可能深埋在密集的瘢痕中。远端单极电图可能根本不显示任何锐利的电位(局部激动)。双极电图可能更好地代表局部心室激动,用于选择消融目标和监测消融效果(图9.6)。
● 上图9.5. 心肌内高位间隔室性心动过速(VT)。A. VT的12导联ECG。B. 左侧窗口:来自左室高位间隔的最早激活部位(垂直红线)的电图显示了一个小的、圆形的预电位,比PVC起始提前30毫秒。注意这个预电位在远端单极电图(UNI-1)上几乎看不见。这种类型的电图强烈表明远端消融电极位于心肌内起源点(intramural focus)之上。右侧窗口:来自RVOT的最早激动位置的电图,与左侧面板显示的电图位置直接相对。这个小的、圆形的预电位比PVC起始提前20毫秒。 这些发现表明PVC/VT的起源是心肌内部的。● 当向左室高位间隔隔放电(40-45瓦)时,PVC/VT直到2分钟后才消失。 在向左室高位间隔发放数次高功率、长时间的射频能量后,PVC/VT变得稀少,但需要从RVOT(右侧窗口)进行消融才能完全消除PVC/VT。
● 上图9.6. 在缺血性心肌病患者中针对局部异常心室活动(LAVA)的消融。 A. 远端双极电图记录了3个锐利的成分(红色箭头)。消融后(40瓦,60秒),这3个成分消失了。 B. 在另一个部位,双极和两个单极电极上记录了圆形的远场电图。消融后(40瓦,90秒),电图没有任何变化。注意UNI-1和UNI-2显示完全相同的电图,表明这些电图是远场的。
---
● In the OU-EP laboratory, focal AT or PVC ablation procedures are started without any sedation or anesthesia to maximize arrhythmia inducibility. ● 在OU-EP手术室,Focal-AT或者PVC消融流程是在没有任何镇静或麻醉的情况下开始,以最大化心律失常的可诱发性。
● Dr. Jackman always instructs patients to proactively report symptoms; he avoids repeatedly asking patients about symptoms when arrhythmia appears. ● Dr. Jackman总是让患者主动报告症状;在心律失常出现时他避免反复询问患者症状。
● This practice is to avoid priming the patient to report equivocal symptoms that can mislead the operator to chase an arrhythmia that is minimally symptomatic. ● 这种做法是为了避免引导患者报告模糊不清的症状,这可能会误导操作者追踪一种症状轻微的心律失常。
● For patients referred for focal AT or PVC ablation, the author prefers to acquire a 2-minute 12-lead ECG in the preparation area. ● 对于因Focal-AT或者PVC而被转诊的患者,笔者更喜欢在准备区获取2分钟的12导联ECG。
● Correlation between symptoms and arrhythmia as well as prediction of the origin of arrhythmia can be assessed more accurately in this way because in the presence of patches for the defibrillator and electro-anatomical mapping system, the position of the ECG patches in the EP laboratory, particularly the precordial leads, is often different from that of a routine 12-lead ECG. Using the 12-lead ECG acquired in the EP laboratory for arrhythmia localization is prone to error. ● 通过这种方式可以更准确地评估症状与心律失常之间的相关性以及预测心律失常的起源,因为在除颤器和三维电解剖映射系统的贴片存在的情况下,EP手术室中的ECG贴片位置,特别是胸前导联,通常与常规12导联ECG不同。使用在EP手术室获取的12导联ECG进行心律失常定位容易出错。
《9.1 Which chamber to map first 》《9.2 先标测哪个腔室?》
● For a focal AT, the author uses the ECG criteria published by Drs. Peter Kistler and Jonathan Kalman to decide which atrium is more likely to be the origin of the focal AT (JACC 2006;48[5]:1010). ● 对于Focal-AT,笔者使用Dr. Peter Kistler和Dr. Jonathan Kalman发表的ECG标准来决定哪个心房更可能是Focal-AT的起源(JACC 2006;48[5]:1010)。
● Of note, these ECG criteria are less accurate in patients who had prior AF ablation because circumferential PV isolation or linear lesion sets create many zones of slow conduction or conduction block in the atrium, rendering the algorithm published by Drs. Kistler and Kalman less accurate. ● 值得注意的是,这些ECG标准在曾经接受过AF消融的患者中准确性较低,因为环肺隔离或线性消融在心房中创造了许多缓慢传导或传导阻滞区域,使得Dr. Peter Kistler和Dr. Jonathan Kalman发布的算法准确性降低。
● To map PVCs, the author uses the algorithms published in a series of papers by Dr. Frank Marchlinski’s group. ● 对于PVC标测,笔者使用Dr. Frank Marchlinski团队发表的一系列论文中的算法。
《9.2 Focal AT without prior AF ablation》《9.2 先前没有进行过房颤消融的Focal-AT》
● ATs originating from the crista terminalis are the most common form of focal AT. The P wave morphology of a crista AT is similar to that of the sinus rhythm. ● 起源于界嵴的AT是最常见的Focal-AT形式。界嵴的P波形态与窦性心律相似。
● Dr. Jackman prefers to position a multielectrode catheter along the cristal terminalis in preparation for mapping a focal AT. ● Dr. Jackman更喜欢在准备标测Focal-AT时,将多电极导管沿界嵴放置。
● The tip of the catheter is positioned in the proximal SVC to ensure that this catheter covers the superior-posterior wall of the RA where cristal terminalis is located. ● 导管头端位于上腔静脉近端,以确保该导管覆盖位于RA后壁的界嵴。
● Some of the electrodes on this crista catheter should record double potentials to ensure that the crista catheter is indeed positioned along the crista terminals. ● crista导管上的一些电极应记录到双电位,以确保crista导管确实沿界嵴放置。
● Right superior pulmonary vein (RSPV) is situated behind the RA posterior wall. ● 右上肺静脉(RSPV)位于RA后壁后面。
● An RSPV tachycardia can masquerade as a crista AT. ● RSPV的心动过速可能会伪装成界嵴AT。
● An important clue that Dr. Jackman is always looking for to differentiate a PV or LA tachycardia from a crista tachycardia is the timing and morphology of the distal unipolar EGM (UNI-1) when the mapping catheter is pointing at the septal-posterior wall of the RA. ● Dr. Jackman总是寻找的一个重要线索是,当标测导管指向RA的间隔-后壁交界处时,远端单极电图(UNI-1)的时间和形态,以区分PV或LA的心动过速与界嵴心动过速。
● If the site of earliest activation along the crista terminalis is preceded by a significant far-field potential on the unipolar EGM, Dr. Jackman has a low threshold for mapping the LA and right-sided PVs before ablating the earliest activation site in the RA (Figure 9.8; Figure 9.9). ● 如果沿界嵴的最早激动位置的单极电图的起始为显著的远场电位,Dr. Jackman在消融RA的最早激动位置之前,倾向先标测LA和右侧PVs(图9.8;图9.9)。
● Another important clue is the relative timing of the septal vs. the lateral aspect of the crista terminalis. If the activation timing of the lateral aspect is earlier, it is very unlikely that this AT is an LA or RSPV tachycardia. ● 另一个重要线索是界嵴的间隔一侧与侧壁一侧的相对时间。 如果侧壁一侧的激动时间更早,那么这种AT几乎不可能是LA或RSPV的心动过速。
● On the contrary, if the activation timing of the septal aspect of the crista terminalis is earlier, Dr. Jackman has a low threshold of mapping the LA and right-sided PVs. ● 相反,如果界嵴的间隔一侧的激动时间更早,Dr. Jackman就容易去标测LA和右侧PVs。
● 上 图9.8. 在RA最早激动位置记录到的远场电位。A. 标测导管定位在RA高位后壁的间隔侧。可以看到一个小的远场电位(红色箭头)。由于其远场特性,没有在这个部位放电。 注意,在窦性心律中,这个远场电位是晚的(蓝色箭头)。 B. LASSO导管位于RSPV内,可见RSPV的电冲动(firing)(红色箭头)。【firing考虑翻译为电冲动,而不译为驱动灶或触发灶】
● Figure 9.9. RSPV tachycardia. A. 12-lead ECG. B. The site of earliest activation in the RA was recorded along the septal aspect of the crista terminalis but the earliest potential appeared to be far-field (red arrows). Tip of the CS catheter was at the distal CS-AIV junction. C. Mapping catheter in the RSPV recorded an even earlier potential (110 ms before RAA) but the UNI-1 EGM began with an r wave (red arrow). D. At the site of earliest activation inside the RSPV, the UNI-1 EGM began with a q wave. To avoid PV stenosis by targeting the site of earliest activation, RSPV antrum was isolated to treat this RSPV tachycardia. ● 上图9.9. RSPV心动过速。A. 12导联ECG。B. RA最早激动位置沿界嵴的间隔侧记录,但最早的电位似乎是远场(红色箭头)。CS导管尖端位于CS-前室间静脉(AIV)交界处。 C. RSPV内的标测导管记录到更早的电位(比RAA早110毫秒),但UNI-1电图以r波开始(红色箭头)。D. 在RSPV内最早激动位置,UNI-1电图以q波开始。为了避免通过瞄准最早激动位置导致PV狭窄,对RSPV前庭进行了隔离以治疗这种RSPV心动过速。
● LA tachycardia can conduct to the RA through three major routes: Bachmann’s bundle (Figure 9.10), inter-atrial septum and CS in decreasing order of prevalence. ● LA心动过速可以通过三个主要途径传导到RA:Bachmann束(图9.10)、房间隔和CS,按发生率从高到底排序。
● LA tachycardias preferentially conducting to the RA through the CS often originate in the septal aspect of the LA. ● 通常通过CS传导到RA的LA心动过速往往起源于LA的间隔侧。
● Dr. Jackman maps the 3 areas to determine if activation timing is earlier there. If it is, Dr. Jackman will proceed with trans-septal puncture to map the LA and PVs. ● Dr. Jackman标测这三个区域以确定那里的激动时间是否更早。如果是,那么Dr. Jackman将进行经房间隔穿刺来标测LA和PVs。
● 上图9.10. RSPV心动过速通过Bachmann束传导到RA。A. 标测导管定位在Bachmann束。远场激动时间(红色箭头)与crista导管(在冠状窦内)上的远场电位(垂直虚线)一样早。这些发现表明这是一种左房心动过速。● B. Bachmann束的位置。标测导管位于RA-SVC交界处下方,在RAO视图上指向三尖瓣环,在LAO视图上指向左。
《9.3 Septal AT》《9.3 间隔房速》
● The anecdotal experience of the OU-EP group indicates that many of the septal right atrial tachycardias originate in the area slightly anterior and superior to the fossa ovalis. ● OU-EP团队的经验表明,许多右房间隔侧心动过速起源于卵圆窝稍前上方的区域。
● They are usually located superior to the HB; ablation here does not carry a high risk of AVN injury because AVN is situated inferior to the HB. ● 它们通常位于希氏束(HB)上方;在这里进行消融不会带来很高的房室结(AVN)损伤的风险,因为AVN位于HB下方。
● If the timing of the RA septum appears very early but the distal unipolar EGMs does not exhibit a qs/QS pattern, Dr. Jackman would map the LA septum before attempting to ablate the “earliest” site along the RA septum to avoid the risk of AV block (Figure 9.11). ● 如果RA间隔侧的时间看起来非常早,但远端单极电图没有显示出qs/QS模式,Dr. Jackman会在尝试消融RA间隔侧“最早”位置之前标测LA间隔侧,以避免房室传导阻滞(AV block)的风险(图9.11)。
● It is noteworthy that the CS catheter typically only covers the inferior and inferolateral aspect of the LA adjacent to the mitral annulus. The anterior wall of the LA is not covered by a catheter in a routine EP study. ● 值得注意的是,CS导管通常只覆盖LA邻近二尖瓣环的下侧和下外侧。 在常规EP研究中,LA的前壁不被导管覆盖。
● A focal AT originating in the anterior wall of the LA can easily conduct to the interatrial septum much earlier than to the CS and create a false impression that the atrial timing of the HB region is earliest and CS activation shows a proximal-to-distal pattern. ● 起源于LA前壁的Focal-AT可以很容易地通过房间隔传导得比到CS更早,从而产生一个错误的假象,即HB区域的心房电位时间最早,CS的激动显示为从近端到远端的模式。
● For this reason, the practice of the OU-EP group to treat an “apparent” RA septal tachycardia is to map the LA before attempting to ablate the site of earliest activation on the RA septum to minimize the risk of AVN injury. ● 因此,OU-EP团队治疗“明显的”RA间隔侧心动过速的做法是,在尝试消融RA间隔侧最早激动位置之前先标测LA,以最小化AVN损伤的风险。
● It is not uncommon to find out that the site of earliest atrial activation was on the anterior wall of the LA, far away from the septum; ablation there does not carry a risk of AV block. ● 在LA前壁发现最早的心房激动位置并不罕见,远离间隔侧;在那里进行消融不会带来房室传导阻滞的风险。
● In a true septal AT, if the timing of the bipolar EGM is equally early between the RA and LA septum, RF application should be delivered to the site where the distal unipolar EGM begins with a qs/QS pattern (Figure 9.11). ● 在真正的间隔侧AT中,如果RA和LA间隔侧的双极电图时间相同,应在远端单极电图以qs/QS模式起始的位置进行放电(图9.11)。
● If the distal unipolar EGM at the site of earliest activation begins with a far-field potential on both the left and right inter-atrial septum, the next step is to map the coronary cusp. ● 如果最早激动位置的远端单极电图在左、右房间隔上都以远场电位开始,下一步是标测主动脉窦。
● Figure 9.11. Using unipolar EGM to select ablation target of a septal AT. A. EGM at the site of earliest activation in the RA was recorded on the RA septum. Note that the distal unipolar EGM began with a small r wave (blue arrow), indicating that the origin of the tachycardia was elsewhere. ● 图9.11. 使用单极电图选择间隔侧AT的消融目标。A. 在RA间隔侧最早激活部位的电图记录在RA间隔侧。注意远端单极电图以小的r波开始(蓝色箭头),表明心动过速的起源在其它地方。
● B. EGM of the site of earliest activation recorded from the LA septum. Note that the distal unipolar EGM began with a QS morphology. Ablation there quickly eliminated the tachycardia. ● B. 来自LA间隔侧最早激活部位的电图。注意远端单极电图以QS形态开始。在那里消融迅速消除了心动过速。
● If the atrial timing at the His region and distal CS are very similar, Dr. Jackman will map the left fibrous trigone. ● 如果希氏束区域和远端CS的心房电位时间非常相似,Dr. Jackman会标测左纤维三角。
● left fibrous trigone左纤维三角位于主动脉
● 心纤维骨骼为心肌和瓣膜附着的纤维性支架,称心纤维骨骼, 包括左纤维三角、右纤维三角和瓣膜附着的纤维环。左纤维三角left fibrous trigone 位于主动脉口与左房室口之间的左侧。右纤维三角right fibrous trigone 又称中心纤维体central fibrous body ,位于左、右房室口和主动脉口之间,其前方与室间隔膜性部相延续, 该纤维三角向后发出一圆形纤维束位于右心房心内膜深面,称Todaro 腱。房室束穿过右纤维三角并沿室间隔膜性部的后下缘走行。二尖瓣环、三尖瓣环、肺动脉瓣环和主动脉瓣环,统称纤维环。
● 这些纤维环分别位于相应瓣膜与心肌的附着处,可使房室口和动脉口不至于随心肌收缩而扩大,防止血液逆流。
● ATs in this region often exits to the RA through the Bachmann’s bundle. Atrial timing recorded from the HB area appears to be early but the unipolar EGM shows a long far-field potential (Figure 9.12).
● 这个区域的AT通常通过Bachmann进入RA。从HB区域记录的心房电位时间看似很早,但单极EGM显示了一个长的远场电位(图9.12)。
● Figure 9.12. Atrial tachycardia originating from the left fibrous trigone. A. 12-lead ECG of tachycardia. B. Atrial activation timing of the anteroseptal area and anterolateral CS were similar. The blue vertical line indicates similar earlier activation recorded on the mapping catheter positioned at the fossa ovalis, indicating that none of these sites (HB, CSd and fossa) was near the origin of the tachycardia. C. Mapping catheter was positioned at the Bachmann’s bundle where a double potential was recorded. The first component (blue arrow) was rounded and appeared to be a far-field potential from the LA. This potential was simultaneous with the far-field potential recorded on the HB catheter. The second component (red arrow) was sharp and was the local RA activation timing. D-E. Mapping catheter was positioned under the left fibrous trigone where earliest atrial activation was recorded; the distal unipolar EGM (UNId) began with a qS pattern. F. Ablation there eliminated AT.
● 图9.12. 起源于左纤维三角的房性心动过速。A. 心动过速的12导联ECG。B. 前间隔和前外侧CS的心房电位激动时间相似。蓝色垂直线表示在卵圆窝处定位的标测导管记录到的差不多早的激动,表明这些部位(HB、CSd和卵圆窝)都不是心动过速的起源。C. 标测导管定位在Bachmann束,记录到双电位。第一个成分(蓝色箭头)是圆形的,看起来像是来自LA的远场电位。这个电位与HB导管记录到的远场电位同时出现。第二个成分(红色箭头)是锐利的,是RA局部的激动时间。D-E. 标测导管定位在左纤维三角下方,记录到最早的心房激动;远端单极电图(UNId)以qS波形开始。F. 在那里消融消除了AT。
《9.4 Pulmonary Vein Tachycardia》 《9.4 肺静脉起源心动过速》
● As discussed earlier, a right PV tachycardias can be difficult to differentiate from a high crista AT. A left PV tachycardia can be difficult to differentiate from a LAA tachycardia. ● 如前所述,右PV心动过速可能难以与高位界嵴AT区分。左PV心动过速可能难以与LAA心动过速区分。
● An important maneuver to map a PV tachycardia is to know the tachycardia originates from the PV (inside-out) or from the PV antrum (outside-in). The former can be cured by PV isolation (either segmental ostial isolation of the culprit PV or circumferential isolation of both PVs on the same side). The latter will require detailed mapping to identify its origin; empirical PV isolation may or may not eliminate this type of tachycardia. ● 标测PV心动过速的一个重要操作是要知道心动过速起源于PV(由内向外)还是起源于PV前庭(由外向内)。前者可以通过PV隔离(对罪魁祸首PV进行节段性口部隔离或同侧两个PV的环状隔离)治愈。后者将需要详细标测以确定其起源;经验性PV隔离可能可以,也可能无法消除这种类型的心动过速。
● The author prefers to put a LASSO catheter deep into the culprit PV and slowly pulls it back. If the timing of distal PV is earlier than that of the antrum, PV isolation is then performed. ● 笔者更喜欢将LASSO导管深入罪魁祸首PV,然后慢慢拉回。如果PV远端的时间比前庭早,那么进行PV隔离。
● On the other hand, if the timing of distal PV is late, more mapping around the PV-LA junction and LA will be performed to identify the true origin of the “PV” tachycardia. ● 另一方面,如果远端PV的时间晚,将在PV-LA交界处和LA周围进行更多标测,以确定“PV”心动过速的真实起源。
《9.5 Young females with multiple focal ATs》《患有多种Focal-AT的年轻女性》
● Patients with this type of arrhythmia often have other co-existing arrhythmias such as inappropriate sinus tachycardia, vasovagal syncope or postural orthostatic tachycardia syndrome, suggesting that dysfunction of the autonomic nervous system may underlie these arrhythmias. ● 这类心律失常患者通常伴有其它共存心律失常,如不适当的窦性心动过速(inappropriate sinus tachycardia)、血管迷走性晕厥(vasovagal syncope)或体位性心动过速综合征(postural orthostatic tachycardia syndrome),这表明自主神经系统功能障碍(dysfunction of the autonomic nervous system)可能是这些心律失常的基础。
● The standard practice of the OU-EP group to treat this type of patients is to start the procedure without any sedation or anesthesia to maximize the chance of inducing focal ATs. ● OU-EP团队治疗这类患者的标准做法是在没有任何镇静或麻醉的情况下开始手术,以最大化诱导Focal-AT的机会。
● Risks of SA nodal or AV nodal injury and phrenic nerve injury are explained to patients in great detail before ablation. ● 在消融前,向患者详细解释窦房结或房室结损伤和膈神经损伤的风险。
● Before administering isoproterenol, the author prefers to quickly map the RA to identify the location of the sinus node and phrenic nerve to minimize the risk of injuring these structures. ● 在给予异丙肾上腺素之前,作者更喜欢快速标测RA以确定窦房结和膈神经的位置,以最小化损伤这些结构的风险。
● Extensive RA and CS burst pacing as well as multiple doses of isoproterenol are used to induce focal ATs. ● 使用广泛的RA和CS Burst起搏以及多次异丙肾上腺素剂量来诱导局灶性AT。
● If the procedure is acutely successful, patients tend to have symptom relief for only a few months; recurrent AT(s) usually originates in a different focus. ● 如果手术即刻成功,患者通常会在仅几个月内缓解症状;复发的AT(s)通常起源于不同的起源点。
● After multiple ablation procedures, many patients remain symptomatic; some patients continue to have debilitating symptoms despite SA nodal or AV nodal injury. ● 经过多次消融手术后,许多患者仍然有症状;即使窦房结或房室结损伤了,一些患者仍然有严重的症状。
● The author often recommends yoga, Tai-Chi or meditation to the patients to help reduce sympathetic outflow as adjuvant therapies to ablation. ● 笔者经常向患者推荐瑜伽、太极或冥想,以帮助减少交感神经流出量(outflow)作为消融的辅助治疗。
《9.6 Mapping PVCs or Focal VT》《标测室早或局灶室速》
● Using the triggered sweep function provided by the Bard recording system to map RVOT/LVOT PVCs, Dr. Jackman sets the trigger at the tall R wave in lead II, III or aVF. With this approach, the only QRS complex showing up on the live and review screens are the targeted PVC beats (Figure 9.13). ● 使用巴德多道仪提供的Triggered sweep功能来标测RVOT/LVOT PVCs,Dr. Jackman将触发设置在导联II、III或aVF的高R波上。通过这种方法,实时屏和回顾屏上显示的唯一QRS波群是目标PVC波(图9.13)。
● Note that the slope of the R wave of PVCs may show subtle beat-to-beat variations; timing reference set on the R wave may not be accurate. ● 注意PVC的R波斜率可能表现出微妙的搏动间变异;设置在R波上的时间参考可能不准确。
● Dr. Jackman typically selects a stable intraventricular EGM (e.g. AIV or ventricular branch of the CS) as the intraventricular timing reference (Figure 9.13). When the mapping catheter is positioned in the zone of early activation, this intraventricular reference is used for accurate timing comparison. ● Dr. Jackman通常选择一个稳定的心室内电图(例如前室间静脉或CS的心室支)作为心室内时间参考(图9.13)。 当标测导管定位在较早激动区域时,这个心室内参考用于精准的时间比较。
● This intraventricular reference can be anywhere in the RV or LV as long as the catheter does not move and EGM is stable regardless of the cardiac cycle or respiration. ● 只要导管不动且电图在心脏周期或呼吸过程中保持稳定,这个心室内参考可以在RV或LV的任何位置。
● The frequency of PVCs often needs to be maintained by adrenergic stimulants such as isoproterenol. Because some PVCs only occur when the sinus rate is relatively slow, sinus tachycardia induced by isoproterenol would suppress PVCs. Despite discontinuation of isoproterenol, the sinus rate remains too fast for PVCs to recur. ● PVC的频率通常需要通过肾上腺素类激动剂如异丙肾上腺素来维持。 因为有些PVC只在窦率相对较慢时发生,异丙肾上腺素诱导的窦性心动过速会抑制PVC。即使停用异丙肾上腺素,窦率仍然过快以至于PVC无法再出现。
● To avoid this problem, the author’s preference is to start with a moderate dose of phenylephrine to induce hypertension, which should trigger the baro-reflex to lower the sinus rate. ● 为避免这个问题,笔者更喜欢首先使用中等剂量的苯肾上腺素(phenylephrine)诱导高血压,这应该触发压力反射(baro-reflex)降低窦率。
● If the frequency of PVC is not affected by phenylephrine, isoproterenol is washed in after blood pressure returns to the normal range. ● 如果PVC的频率不受苯肾上腺素影响,那么在血压恢复正常范围后,再注入异丙肾上腺素。
● 上图9.13. 正在标测PVCs。A. 巴德Triggered sweep设置为在II导联中跨过水平红线时感知电位。这样,回顾屏只回放具有高R波(PVCs)的搏动。由于QRS波群可能略有变化,稳定的心室电图用于准确的心内时间参考(垂直蓝线)。蓝色箭头表示伪影。 B. 左侧窗口。成功消融部位位于大静脉和前室间静脉交界处。双极和单极电图同时开始;远端单极电图(UNI-1)以qs波开始。右侧窗口。起搏标测显示97%匹配。在这里消融消除了PVCs。
● Often, the same site tagged by electro-anatomical mapping during PVC and during sinus rhythm is >1cm apart. ● 通常,三维电解剖标测在PVC和窦律期间标记的相同部位相距>1cm。
● After PVCs are eliminated by ablation, reinforcement ablation during sinus rhythm around the successful ablation site may appear to be at a distance from the successful site tagged during PVCs. ● 在消融消除PVCs后,在窦律期间对成功消融部位周围的巩固消融可能看起来与PVC期间标记的成功部位有距离。
● To avoid this problem, the author prefers to take a location-only point on the CARTO during sinus rhythm immediately before ablation to serve as a reference point in sinus rhythm to deliver effective reinforcement ablation lesions. ● 为避免这个问题,笔者更喜欢在消融前立即在CARTO上取一个仅位置点作为窦律参考点,以在窦律期间提供有效的巩固消融损伤。
● If one cannot find any early activation site where the distal unipolar EGM begins with a qs/QS pattern, it suggests intramural or epicardial origin. ● 如果找不到任何远端单极电图以qs/QS模式开始的早的激动位置,这表明起源可能是心肌内或心外膜。
● If no qs/QS EGM can be found after mapping the neighboring chamber or epicardium, Dr. Jackman ablates the sites showing the earliest unipolar EGM. It may require higher power and longer RF applications to eliminate this intramural focus.● 如果在邻近腔室或心外膜标测后仍然找不到qs/QS电图,Dr. Jackman会消融显示最早单极电图的部位。可能需要更高的功率和更长的放电来消除这个心肌内起源点。
● If a pre-potential is the ablation target (e.g. in the coronary cusp), the distal unipolar EGM may not begin with a qs/QS pattern because the tip electrode may be in contact with the body, not the origin of the muscle bundle that is the source of the PVC. ● 如果预电位是消融目标(例如在主动脉窦),远端单极电图可能不会以qs/QS模式开始,因为头端电极可能与体部接触,而不是PVC起源的肌袖。【body理解为体部】
● As long as the distal unipolar electrode records the pre-potential, it is a good ablation target. This is similar to an AP ablation. As long as the tip electrode records the AP potential, ablation there should work. ● 只要远端单极电极记录到预电位,它就是一个良好的消融目标。这与AP消融类似。只要尖端电极记录到AP电位,消融那里就应该有效。
● The OU-EP group has not adopted the practice of using cryoablation to treat PVCs that originate from locations difficult to stabilize electrode-tissue contact. ● OU-EP团队尚未采用使用冷冻消融治疗难以稳定贴靠的PVC。
● The idea behind using cryoablation is that it can stick to the target and appears to provide better electrode-tissue contact. ● 使用冷冻消融的想法是它可以粘附在目标上,似乎能提供更好的贴靠。
● However, for cryoablation to work, it requires good electrode-tissue contact to allow the tissue temperature to drop to -40 to -50°C.● 然而,冷冻消融要发挥作用,需要良好的贴靠,以使组织温度降至-40至-50°C。
● If contact is suboptimal, the blood between the electrode and tissue forms an ice ball. Similar to an igloo, ice ball serves as an insulator that only allows the tissue temperature to reach 0°C. ● 如果接触不佳,电极和组织之间的血液会形成冰球。类似于冰屋,冰球充当绝缘体,只允许组织温度达到0°C。
● Therefore, for cryoablation to work in PVC ablation, the electrode-tissue contact must be very good in the first 30-40 seconds to allow the tip electrode to be stuck to the targeted tissue without leaving a space between the targeted tissue and electrode to form an ice ball. ● 因此,为了在PVC消融中使冷冻消融发挥作用,电极组织接触在最初的30-40秒内必须非常好,以使尖端电极粘附在目标组织上,而不在目标组织和电极之间留下形成冰球的空间。
《9.7 “Whack-a-mole” ablation》《“打地鼠”消融》
● It is not uncommon to encounter a situation in which PVCs of different origins appear randomly like the “whack-a-mole” game. Operators end up not being able to finish mapping any of the PVCs. ● 不同起源的PVC随机出现,就像“打地鼠”游戏一样,这种情况并不少见。操作者最终无法完成任何PVC的标测。
● In this difficult situation, the author carefully selects some ECG leads that can discern different forms of PVCs. These ECG leads are displayed in both the Bard recording system and CARTO mapping system. ● 在这种困难情况下,笔者仔细选择一些ECG导联,可以区分不同模式的PVC。这些ECG导联在巴德多道仪和CARTO系统中显示。
● While mapping PVC1, if the local timing is early for PVC2, the author instructs an assistant to write down “CARTO point 43, early for PVC2” in the Bard recording system. ● 在标测PVC1时,如果局部时间对PVC2来说很早,笔者会指示助手在巴德多道仪中写下“CARTO点43,对PVC2来说很早(CARTO point 43, early for PVC2)”。
● This approach allows the operator to focus on mapping one form of PVC but gain insight into the site of early activation of other forms of PVCs. ● 这种方法使操作者能够专注于标测一种PVC,同时了解其它形式PVC早的激动位置的信息。
● On a lucky day, after PVC1 was eliminated, the author has a rough idea about the site of early activation of other forms of PVCs as well. Detailed mapping can then be proceeded. ● 在幸运的时候,PVC1消除后,笔者对其它形式PVC早的激动位置也大致了解。然后可以进行详细标测。
● Manufacturers of all the mapping systems are developing new algorithms to allow the operator to map multiple PVCs at the same time. In the near future, we may not need to play the “whack-a-mole” game anymore. ● 所有标测系统的制造商都在开发新算法,允许操作者同时标测多个PVC。在不久的将来,我们可能不再需要玩“打地鼠”游戏了。
《9.10 Myocardial origin vs. Purkinje origin》《心肌起源与浦肯野(Purkinje)起源》
● The conduction velocity of the Purkinje fibers is 2-3 M/sec, approximately 10 times faster than that of myocardium. Unless the peripheral Purkinje system is significantly diseased, arrhythmias originating in the Purkinje system usually conducts quickly back to the His bundle. The VH interval of Purkinje-related arrhythmias is usually shorter than 40 ms.For example, the VH interval is typically 20-30 ms in atrio-fascicular AVRT (Mahaim) and in VT originating in the left posterior fascicle. Because of fast conduction in the Purkinje system, the wave front of arrhythmias originating in the Purkinje system propagates quickly to both ventricles through the peripheral Purkinje system. ● 浦肯野纤维的传导速度为2-3 m/s,大约是心肌的10倍。除非外周浦肯野系统有显著病变,通常起源于浦肯野系统的心律失常会迅速传导回希氏束。浦肯野相关心律失常的VH间期通常小于40毫秒。例如,在房室结-希氏束(Mahaim)和起源于左后束支的VT中,VH间期通常为20-30毫秒。由于浦肯野系统中的快速传导,起源于浦肯野系统的心律失常波阵面通过外周浦肯野系统迅速传播到两个心室。
● For arrhythmias originating from the LBB or its fascicle, the initial vector of septal activation is usually preserved, retaining the small, sharp r wave (<40 ms) in V1 and/or V2 lead. Therefore, the presence of a typical RBBB pattern (V1 and/or V2 begins with a small, sharp r wave) should alert the operator that this arrhythmia may originate from the left-sided Purkinje system, not myocardium. ● 对于起源于LBB或其束支的心律失常,间隔侧激动的初始向量通常得以保留,在V1和/或V2导联中保留小的锐波(<40毫秒)。因此,V1和/或V2导联出现典型的RBBB模式(V1和/或V2以小的锐波开始)应提醒操作者,这种心律失常可能起源于左侧浦肯野系统,而不是心肌。
● For arrhythmias originating from the RBB system, the V1 and/or V2 lead can begin with a small, sharp r wave or exhibit a QS pattern, depending on how the proximal ventricular septum is activated. ● 对于起源于RBB系统的心律失常,V1和/或V2导联可以以小的锐波开始或表现出QS模式,这取决于近端室间隔如何被激活。
● If it is activated by the RBB, it most likely will exhibit a QS pattern because the septal activation vector is pointing away from the V1 and/or V2 lead. ● 如果它是由RBB激活的,很可能表现出QS模式,因为间隔侧激动向量远离V1和/或V2导联。
● If the proximal septum is activated by the septal branches of the LBB, it most likely will begin with a small, sharp r wave in V1 and/or V2 because the septal vector is pointing toward the V1 and/or V2 lead. ● 如果近端间隔侧是由LBB的间隔侧支激活的,它很可能在V1和/或V2导联以小的锐波开始,因为间隔侧向量指向V1和/或V2导联。
● As discussed in Chapter 4 and Chapter 11, the author views the small, sharp r wave in lead V1 and/or V2 as a finding with a high positive predictive value of ventricular activation through the Purkinje system; ● 正如第4章和第11章所讨论的,笔者将V1和/或V2导联中的小锐波视为通过浦肯野系统进行心室激活的高阳性预测值;
● however, the absence of it does not exclude arrhythmias of His-Purkinje origin because the refractory period of the septal branches of the LBB may be longer than the coupling interval of the arrhythmia. ● 然而,其缺失并不排除起源于希浦系统的心律失常,因为LBB的间隔侧支的不应期可能比心律失常的偶联间期更长。
● The author uses a two-step process to make an educated guess based on the electrophysiological properties of the His-Purkinje system.
● Step-1: examine lead V1 and V2 to determine if it exhibits typical bundle branch block or not.
● Step-2: measure the VH interval of the PVC or VT.
a. If it exhibits typical LBBB or RBBB pattern and the VH interval is fixed and <40 ms, the arrhythmia most likely originates from the His-Purkinje system. The author will target the Purkinje potential.
b. If it exhibits atypical LBBB or RBBB pattern and the HB potential is dissociated from the ventricular potential (the VH interval is not fixed) or the VH interval is very long (e.g. >60 ms), this arrhythmia is unlikely to originate from the Purkinje system. The author will search for the earliest myocardial potential.
c. For PVCs exhibiting atypical BBB but with a long, fixed VH (e.g. 60 ms), it suggests that the arrhythmia does not originate from the Purkinje system but quickly engages the Purkinje system. For example, PVCs originating in the papillary muscle with a stable VH interval of 70 ms may suggest that the origin of the PVC might not be deep in the papillary muscle.
d. If clinical or induced arrhythmia showed multiple morphologies consistent with LBBB or RBBB with hemi-block, it strongly suggests that this arrhythmia originates in the His-Purkinje system and has multiple exits.
d. These educated guesses are based on the assumption that the patient does not have diffusely diseased His-Purkinje system. However, if a patient has a very long HV interval (e.g. >80 ms), the presence of diffusely diseased His-Purkinje system makes the odds of Purkinje-related arrhythmia even higher.
● 笔者使用基于希浦系统的电生理特性的两步过程来进行有根据的猜测。
● 步骤1:检查V1和V2导联,确定是否表现出典型的束支传导阻滞。
● 步骤2:测量PVC或VT的VH间期。
a. 如果它表现出典型的LBBB或RBBB模式,并且VH间期固定且<40毫秒,心律失常很可能起源于希浦系统。笔者将把浦肯野电位作为目标。
b. 如果它表现出非典型的LBBB或RBBB模式,并且HB电位与心室电位分离(VH间期不固定)或VH间期非常长(例如>60毫秒),这种心律失常不太可能起源于浦肯野系统。笔者将寻找最早的心肌电位。
c. 对于表现出非典型BBB但具有长、固定的VH(例如60毫秒)的PVC,这表明心律失常并非起源于浦肯野系统,但很快涉及到浦肯野系统。例如,起源于乳头肌的PVC,稳定的VH间期为70毫秒,可能表明PVC的起源不在乳头肌深处。
d. 如果临床或诱发的心律失常显示出与LBBB或RBBB一致的多种形态,伴有半阻滞,这强烈表明这种心律失常起源于希浦系统,并具有多个出口。
d. 这些有根据的猜测是基于患者没有希浦系统弥漫性病变的假设。然而,如果患者有一个非常长的HV间期(例如>80毫秒),弥漫性病变的希浦系统的存在使得浦肯野相关心律失常的可能性更高。
● Figure 9.14 illustrates some of the examples correctly predicted by the authors educated guesses. Readers may dig out some past papillary muscle PVC or fascicular VT cases to see if this two-step process correctly predict the origin of the arrhythmia.● 图9.14展示了笔者有根据的猜测正确预测的一些例子。读者可以找出过去的乳头肌PVC或束支VT病例,看看这个两步过程是否正确预测了心律失常的起源。
● Figure 9.14. PVCs originated from papillary muscle vs. Purkinje system. A. Ventricular septum is the first part of the ventricle that is activated by the Purkinje network of the left ventricle (red arrow). Approximately 5 ms later, the septal branch of the RBB activates the septum (green arrow). Ventricular septum is activated within 20-30 ms. The net vector is therefore left to right, posterior to anterior, creating a small, sharp r wave in V1 and/or V2 (thin red arrow) as well as a q wave (blue arrows) in lateral leads such as lead I and V6.
● 图9.14. PVC起源于乳头肌与浦肯野系统。A. 左心室的室间隔是最早被左心室浦肯野网络激动的部分(红色箭头)。大约5毫秒后,RBB的间隔侧支激活室间隔(绿色箭头)。室间隔在20-30毫秒内被激活。净向量因此从左到右,从后到前,V1和/或V2(细红色箭头)产生小锐波,以及I导联和V6等侧导联中的q波(蓝色箭头)。
● B. PVCs originated from the posterior-medial papillary muscle. Note that the QRS complex in lead V1 began with a q wave, consistent with an atypical RBBB morphology.
● B. PVC起源于后组内侧乳头肌。注意V1导联的QRS波群以q波开始,与非典型RBBB形态一致。
● C. There was no visible HB/RBB potential in the PVC shown in the left panel. In another PVC complex, a late HB/RBB potential (red arrow) was visible. These findings strongly suggest that PVCs did not originate from the Purkinje system. It required multiple, high power, long RF applications to eliminate this PVC originated deep in the posterior-medial papillary muscle.
● C. 左侧窗口显示的PVC中没有可见的HB/RBB电位。在另一个PVC复合波中,可见晚期HB/RBB电位(红色箭头)。这些发现强烈表明PVC并非起源于浦肯野系统。需要多次高功率、长时间的放电才能消除起源于后组内侧乳头肌深处的这个PVC。● Vertical red line: beginning of the QRS complex.● 垂直红线:QRS波群的开始。
● D. In another patient, three different PVCs with RBBB morphology were identified. Note atypical RBBB of all the 3 different PVCs. E. Left panel: sinus rhythm; middle panel: PVC1. There was no visible HB/RBB potential. This PVC originating deep in the posterior-medial papillary muscle was eliminated by multiple high power, long RF applications. Right panel: PVC3. A VH interval of 63 ms was noted in most PVC3 complexes, suggesting that PVC3 may not be deep in the anterior-lateral papillary muscle. PVC3 was easily eliminated.
● D. 在另一位患者中,确定了三种不同的RBBB形态的PVC。注意所有3种不同PVC的非典型RBBB。E. 左侧窗口:窦性心律;中间窗口:PVC1。没有可见的HB/RBB电位。这个起源于后组内侧乳头肌深处的PVC通过多次高功率、长时间的放电。右侧窗口:PVC3。大多数PVC3复合波中注意到了63毫秒的VH间期,这表明PVC3可能不在前组外侧乳头肌深处。PVC3很容易消除。● Red arrow: HB potential.● 红色箭头:HB电位。
● F. In another patient referred for PVC ablation, ECG showed typical LBBB, suggesting that this arrhythmia originated from the RBB system. G. A fixed VH interval of 20 ms was visible. Note retrograde RBB to HB conduction. G. During decremental atrial pacing, the stimulus-QRS interval increased progressively and typical LBBB became more prominent. These responses are typical for an atrio-fascicular accessory pathway (Mahaim). This “PVC” was automaticity originating from the accessory AVN. Ablation targeting the accessory pathway potential on the tricuspid annulus eliminated this “PVC”.
● F. 在另一位因PVC消融而被转诊的患者中,ECG显示典型的LBBB,表明这种心律失常起源于RBB系统。G. 可见固定的20毫秒VH间期。注意逆行RBB到HB的传导。G. 在递减性心房起搏期间,S-QRS间期逐渐增加,典型的LBBB变得更加明显。这些反应对于房室结-希氏束(Mahaim)旁路是典型的。针对三尖瓣环上的旁路电位的消融消除了这个“PVC”。
注:以上内容来自EP偶像Sunny Po教授的电生理著作《Warren Jackman's Art of War: A Sniper's Approach to Catheter Ablation》的第9章,由于学习小组的水平有限,欢迎大家批评指正!